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METHOD TO MAKE INTERFEROMETRIC
TAPER WAVEGUIDE FOR HAMR LIGHT
DELIVERY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of and priority to U.S.
Provisional Application 61/943,951 filed on Feb. 24, 2014,
the contents of which are incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates to magnetic recording tech-
nology, and in particular, to a method for manufacturing a
light delivery component for use in heat-assisted magnetic
recording media.

BACKGROUND

For all types of substrates, perpendicular magnetic record-
ing (PMR) technology has become more prevalent in mag-
netic recording media with the goal of increasing areal den-
sity. Areal density is generally limited by the media’s ability
to, ata sufficiently small bit size, write a data bit, read back the
same data bit, and maintain the magnetic characteristics of the
data bit over time. For magnetic media, these parameters are
controlled by the materials coercivity. However, there exists a
threshold wherein the coercivity is so high, and the bit size so
small, that the writing element must use an impractically high
magnetic field to affect change to a data bit. The advent of
heat-assisted magnetic recording (HAMR) media addresses
this problem by applying heat to a data bit during a write
operation to lower the coercivity to a writable level, and then
removing the heat to allow the coercivity to return to a high
level to keep the data bit stable.

By using HAMR technology, areal density in hard disk
drives can be extended beyond 1 Th/in?. FIG. 1 illustrates a
HAMR head light delivery system design. Laser light from an
external laser diode (LD) 100 is coupled into interferometric
taper waveguide (I-TWG) 200 by mode converter (MC) 210,
and then delivered through I-TWG 200 to near field trans-
ducer (NFT) 250 at air bearing surface (ABS) 270, which
focuses the laser generated light energy into a less than 50 nm
spot on the PMR media surface.

The structure of an I-TWG 200, as shown in FIG. 2,
includes several critical components including mode con-
verter taper 210, splitter 220, and directional coupler 230.
Constructing these components into a unified structure on a
single wafer with homogenous deposition and etching tech-
nologies is challenging because the components have very
different dimensional scale, but dimensional accuracy is
extremely important to operational performance of the
HAMR. For example, the I-TWG taper angle and length,
waveguide critical dimension uniformity (CDU), line edge
roughness (LER), splitter asymmetry, and MC-to-taper over-
lay are critical to the HAMR’s signal-to-noise ratio (SNR),
head longevity, and power consumption. Directional coupler
230 is used to return some of the laser light to the backside of
slider 150 (as shown in FIG. 1) for laser alignment adjusting.
However, dimensional accuracy necessary to control the taper
angle and length, CDU, LER, splitter asymmetry, and MC-to-
taper overlay is difficult to control, particularly when building
the I-TWG on a single substrate. Accordingly, currently avail-
able -TWG methods tend to use more expensive, multi-
substrate construction and tend to result in structures with
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variances in these critical parameters. The resulting [-TWG’s
are not ideal in their efficiency, power consumption, and head
life.

BRIEF SUMMARY OF THE DISCLOSURE

The present disclosure is directed towards magnetic
recording media, and in particular, a method for making an
I-TWG for a HAMR head on a single substrate with increased
dimensional accuracy. Embodiments of this disclosure
describe a method for making an I-TWG for a HAMR head
that efficiently delivers laser light from the backside of a
slider to an ABS region, resulting in an HAMR with extended
head life and reduced power consumption.

In one example, a method for manufacturing a waveguide
includes depositing a film stack with two different hard mask
layers on a cladding-core-cladding sandwich and defining a
first pattern in a photoresist layer on the film stack. A method
for making a waveguide may also include transferring the
pattern to a first hard mask layer, removing the photoresist
layer, and forming a second pattern in a second hard mask
layer patterned from the first pattern in the first hard mask
layer. A method for making a waveguide may also include
transferring the second pattern to the core layer and planariz-
ing a top surface of the waveguide.

In some examples, a first hard mask layer is Ta,O5, a
second hard mask layer is Cr, and the cladding layers are
Si0,. Various material compositions of the hard mask and
cladding layers are possible as would be known to one of
ordinary skill in the art.

In some examples, the defining of the I-TWG pattern in
photoresist is accomplished with deep ultraviolet lithography,
the transferring the pattern to the hard mask layers and the
core layer is accomplished with reactive ion etching pro-
cesses. In further examples, the planarizing is chemical
mechanical planarizing.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are illustrated by way of example,
and not limitation, in the figures of the accompanying draw-
ings in which:

FIG. 1 illustrates an example interferometric taper
waveguide (I-TWG) as used in heat-assisted magnetic
recording media (HAMR);

FIG. 2 is a schematic diagram of an I-TWG;

FIG. 3 is a diagram illustrating a process for making an
-TWG.

FIG. 4A is a scanning electron microscope (SEM) top view
of an I-TWG formed on a substrate;

FIG. 4B illustrates a cross-section view and a top view of
an I-TWG film stack;

FIG. 4C illustrates a cross-section view and a top view of
an I-TWG film stack with photoresist pattern deposited
thereon;

FIG. 4D illustrates a cross-section view and a top view of
an I-TWG film stack following a photolithography pattern
forming process and a reactive ion etch (RIE) pattern forming
process;

FIG. 4E illustrates a cross-section view and a top view of an
I-TWG film stack following a photoresist removal process;

FIG. 4F illustrates a cross-section view of an I-TWG film
stack following a second RIE pattern forming process;

FIG. 4G illustrates a cross-section view and a top view of
an [-TWG film stack following a third RIE pattern forming
process;
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FIG. 4H illustrates a cross-section view and a top view of
an I-TWG film stack following a cladding refill process;

FIG. 41 illustrates a cross-section view and a top view of an
I-TWG film stack following a photolithography pattern form-
ing process step and a fourth RIE pattern forming process;

FIG. 4] illustrates a cross-section view and a top view of an
I-TWG film stack following a planarization process;

FIG. 4K illustrates a cross-section view and a top view of
an [-TWG film stack following a hard mask removal process;

FIG.5A is a SEM top view image of an I-TWG photoresist
pattern as part of a process to make an I-TWG;

FIG. 5B is a SEM top view image of an [-TWG hardmask
1 (HM1) layer pattern as part of a process to make an I-TWG;

FIG. 5C is a SEM top view image of an [-TWG hardmask
1 (HM2) layer pattern as part of a process to make an I-TWG;

FIG. 5D is a SEM top view image of an [-TWG final
pattern;

FIG. 6A is a transmission electron microscope (TEM)
image of an I-TWG directional coupler site following a reac-
tive ion etch (RIE) process;

FIG. 6B is a SEM image of an I-TWG directional coupler
site following an SiO2 refill process;

FIG. 6C is a SEM image of an I-TWG taper site following
a waveguide etch (WGE) process;

FIG. 6D is a SEM image of an I-TWG directional coupler
site following a chemical mechanical planarization (CMP)
process.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of various
embodiment of the present disclosure. It will be apparent to
one skilled in the art, however, that these specific details need
not be employed to practice various embodiments of the
present disclosure. In other instances, well known compo-
nents or methods have not been described in detail to avoid
unnecessarily obscuring various embodiments of the present
disclosure.

As disclosed herein, a process for manufacturing a
waveguide includes depositing a film stack wherein the film
stack includes a first hard mask layer, a second hard mask
layer, a first cladding layer, a core layer, and a second cladding
layer. Some embodiments include defining a first pattern in a
photoresist layer, transferring the first pattern to the first hard
mask layer, and removing the photoresist layer. Several
embodiments may also include forming a second pattern in
the second hard mask layer patterned from the first pattern in
the first hard mask layer, and transferring the second pattern
to the core layer. Some embodiments my also include pla-
narizing a top surface of the waveguide. In some examples,
the core layer is deposited on the second cladding layer, the
first cladding layer is deposited on the core layer, the second
hard mask layer is deposited on the first cladding layer, and
the first hard mask layer is deposited on the second hard mask
layer. Further, in some examples of the disclosure, the first
hard mask layer comprises Ta,Os, the second hard mask layer
comprises Cr, the first cladding layer comprises SiO,, the
core layer comprises Ta,Os, and the second cladding layer
comprises Si0,. The deposit and removing processes dis-
closed may include reactive ion etching, deep ultraviolet
lithography, chemical mechanical planarization, and other
lithography and manufacturing processes as are known in the
art.

FIG. 1 illustrates an example interferometric taper
waveguide (I-TWG) as used in heat-assisted magnetic
recording media (HAMR). A HAMR device includes a laser
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100 mechanically coupled to a slider 150 and an - TWG. FIG.
1 illustrates a blown up view of the I-TWG 200 coupled to a
mode converter 210. The I-TWG and mode converter struc-
tures may be constructed on a single substrate, or may be an
assembly of components constructed on different substrates.
The waveguide structures of the I-TWG may be less than a
few microns wide, but may also scale up to larger sizes
depending on the wavelength of the laser. Laser wavelength
may be selected for efficient delivery of heat through the
I-TWG to the media surface, as would be known in the art. For
example, laser diodes that emit wavelengths in the range of
375 nm to 830 nm may be used. The type of laser diode
selected only affects the design of the I-TWG to the extent
that the critical dimensions of the waveguide may be opti-
mally selected depending on the type of laser diode used.
Near field transducer 250 couples to the opposite end of
I-TWG 200 from mode converter 210. Near field transducer
250 includes an air bearing surface 270.

FIG. 2 is a schematic diagram of an I-TWG. Mode con-
verter 210 is optically couples to splitter 220. Splitter 220
optically couples to directional coupler 230. Referring to
FIGS. 1 and 2, optimally, the critical dimensions uniformity
of'the I-TWG will vary by less than 5 nm.

FIG. 3 is a diagram illustrating a process for making an
I-TWG. Referring now to FIG. 3, one embodiment of a
method for making an I-TWG 300 includes the steps of
depositing an I-TWG film stack at step 302, spinning a pho-
toresist pattern at step 304, and defining an I-TWG pattern
with deep ultraviolet (DUV) lithography at step 306. The
method may also include transferring the I-TWG pattern to a
first hardmask layer (HM1) using a reactive ion etch (RIE)
process at step 308, and removing the photoresist at step 310.
The method may also include forming a temporary I-TWG
pattern on a second hardmask layer (HM2) using a RIE pro-
cess at step 312, and transferring the temporary pattern to an
I-TWG core layer with a RIE process at step 314. In some
embodiments, a process for making an I-TWG also includes
refilling a SiO2 cladding layer around the I-TWG structure at
step 316, removing excess SiO2 with a waveguide etch
(WGE) process and/or RIE process at step 318, and planariz-
ing the I-TWG structure with chemical mechanical planariza-
tion (CMP) at step 320.

FIG. 4A is a scanning electron microscope (SEM) top view
of an I-TWG formed on a substrate. Referring now to FIG.
4A, the I-TWG structure may be formed on a SiO2 substrate,
such as a wafer, using lithographic processes. FIG. 4 A further
demonstrates the taper shaped I-TWG pattern 405 from a top
down view. FIGS. 4B through 4K illustrate cross section top
views of the I-TWG structure as it is formed, as described in
several embodiments of this disclosure, using processes
including photolithography, reactive ion etching (RIE), and
chemical mechanical planarization (CMP) steps.

FIG. 4B illustrates a cross-section view and a top view of
an I-TWG film stack. Referring now to FIG. 4B, and also to
FIG. 3, an I-TWG film stack as used in some embodiments of
the disclosure may be formed using material deposition tech-
niques as would be known to one of ordinary skill in the art.
In some embodiments, the I-TWG film stack includes a first
hard mask layer (HM1) 410, a second hard mask layer (HM2)
420, a top cladding layer 430, an I-TWG core layer 440, and
abottom cladding layer 450. In some embodiments, the HM1
layer 410 comprises Ta,O5 or Ta, the HM2 layer 420 com-
prises Cr or Ru, the top cladding layer 430 comprises SiO2,
the I-TWG core layer 440 comprises Ta,Os, and the bottom
cladding layer 450 comprises SiO,. Other material stacks
may be used as would be known to one of ordinary skill in the
art wherein the general structure includes two hard mask
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layers 410 and 420 and an [-TWG core 440 sandwiched by
two cladding layers 430 and 450. As shown in FIG. 4A, a
bi-layer hard mask deposition of Cr and Ta,O, may be used to
provide sufficient protection for the I-TWG structure during
the RIE processes. The HM1 layer 410 may also be used as a
CMP stop layer during I-TWG final planarization in step 320.

FIG. 4C illustrates a cross-section view and a top view of
an [I-TWG film stack with photoresist pattern deposited
thereon. Referring now to FIG. 4C, and still referring to FIG.
3, aphotoresist layer 460 may be spun on the film stack in step
304. A deep ultraviolet (DUV) photolithography process may
then be used to define the I-TWG pattern in the photoresist
layer 460 at step 306. The I-TWG pattern may then be trans-
ferred to the HM1 layer 410 through an RIE process in step
308.

FIG. 4D illustrates a cross-section view and a top view of
an [-TWG film stack following both a photolithography pat-
tern definition process and a reactive ion etch (RIE) pattern
transferring process. Referring now to FIG. 4D, and still
referring to FIG. 3, the relative position of the taper and mode
converter structures of the I-TWG may be precisely con-
trolled using DUV scanner photolithography process at step
308. Alternatively, in some embodiments of the disclosure,
other photolithography and/or ion etching or milling pro-
cesses, or combinations thereof, may be used to form the
I-TWG structure as would be known to one skilled in the art.
Referring again to FIGS. 3 and 4C, the photolithography layer
460 may be removed using a dry etching process, for
example, using a resist ashing process at step 310. In other
embodiments of the disclosure, photoresist removal tech-
niques specific to the type of resist use, but non-corrosive to
the remaining HM1 and HM2 layers, such as chemical strip-
ping, may be used.

FIG. 4E illustrates a cross-section view and a top view of an
I-TWG film stack following a photoresist removal process.
Referring now to FIG. 4E, the resulting I-TWG structure has
a clean, resist-free surface with an I-TWG pattern etched on
the HM1 layer 410. Referring again to FIG. 3, a second RIE
process 312, using the already formed I-TWG pattern in HM1
layer 410, may be used to form a temporary I-TWG pattern in
HM2 layer 420.

FIG. 4F illustrates a cross-section view and atop view ofan
I-TWG film stack following the second RIE pattern forming
process 312. Referring now to FIG. 4F, a temporary I-TWG
pattern is formed in HM2 layer 420. Referring again to FIGS.
3 and 4B, the temporary I-TWG pattern formed in step 312
may be transferred through cladding layer 430 to - TWG core
layer 440 using a third RIE process 314.

FIG. 4G illustrates a cross-section view and a top view of
an [-TWG film stack following the third RIE pattern forming
process 314. Referring now to FIG. 4G, the I-TWG pattern is
successfully transferred to I-TWG core layer 440 to form a
final I-TWG structure. Further, the HM1 layer 410 may also
be removed by RIE process 314. However, RIE process 314
also may remove substantial portions of cladding layer 450.
Referring again to FIG. 3, SiO2 cladding may be re-deposited
around the I-TWG structure in step 316. In some embodi-
ments of the disclosure, the cladding material may be other
selected from other cladding materials known to one of skill
in the art.

FIG. 4H illustrates a cross-section view and a top view of
an [-TWG film stack following the cladding refill process
316. Referring now to FIG. 4H, the final I-TWG structure
formed in I-TWG core layer 440 is embraced by cladding
material that was refilled in step 316. Referring again to FIG.
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6

3, excess cladding material may be removed using a
waveguide etch (WGE) process and/or a fourth RIE process at
step 318.

FIG. 41 illustrates a cross-section view and a top view of an
I-TWG film stack during the WGE photolithography process
from step 318. Referring now to FIG. 41, a second photoresist
WGE pattern may be defined on the I-TWG structure and
excess cladding material deposited in step 316 may be
removed by a fourth RIE process. In other embodiments of
the disclosure, excess cladding material may be removed
using other removal processes as would be known to one of
skill in the art. Referring again to FIG. 3, the resulting I-TWG
structure shown in FIG. 4] may be planarized using a chemi-
cal mechanical planarization (CMP) process at step 320.

FIG. 4] illustrates a cross-section view and a top view of an
I-TWG film stack following CMP process 320. The resulting
structure includes an I-TWG structure surround by cladding,
and planarized, but with HM2 layer 420 still capping the top
of the structure. HM2 layer 420 may be subsequently
removed using a wet etch process, or other mask removal
processes as would be known to one of skill in the art.

FIG. 4K illustrates a cross-section view and a top view of
an [I-TWG film stack following the HM2 removal process.
Referring now to FIG. 4K, a resulting I-TWG structure with
cladding is completely flat, allowing for easy integration with
other HAMR components while the I-TWG structure is still
attached to its substrate wafer.

FIG. 5A is a SEM top view image of an [-TWG with
photoresist I-TWG pattern. Now referring to FIG. 5A, and
again referring to FIG. 3, a photoresist - TWG pattern may be
defined over the I-TWG film stack at step 304. The photore-
sist pattern forms the shape of the taper waveguide compo-
nents (e.g. splitter 220 and directional coupler 230 as shown
in FIG. 2).

FIG. 5B is a SEM top view images of an I-TWG hard mask
layer HM1 410 following transfer of the I-TWG pattern at
step 308 and removal of the photoresist at step 310. Referring
to FIG. 5B, the I-TWG structure is clearly defined in HM1.

FIG. 5C is a SEM top view images of an I-TWG hard mask
layer HM2 420 following formation of the temporary - TWG
pattern at step 312. Referring to FIG. 5C, the [-TWG structure
is clearly defined in HM2.

FIG. 5D is a SEM top view image of an [-TWG final pattern
in I-TWG core layer 440.

FIG. 6A is a transmission electron microscope (TEM)
cross-section image of an I-TWG directional coupler site
following a reactive ion etch (RIE) process at step 314. Refer-
ring to FIG. 6A, the cross-section of the directional coupler
section of the I-TWG structure can be seen with HM2 layer
420 remaining on cladding layer 430, which in turn is layered
on I-TWG core layer 440.

FIG. 6B is a SEM image of the same I-TWG directional
coupler site shown in FIG. 6A following SiO2 refill process
316. Referring to FIG. 6B, the dark SiO2 cladding material
can be seen filling in the gaps left from RIE process 314.

FIG. 6C is a SEM image of an I-TWG taper site following
WGE process 318.

FIG. 6D is a SEM image of the same I-TWG directional
coupler site shown in FIGS. 6A and 6B following CMP
process 320. Referring to FIG. 6D, the resulting I-TWG
directional coupler structure is fully clad in SiO2, and com-
pletely flat, enabling easy integration with other HAMR com-
ponents while still on the wafer substrate (i.e. integration with
a writer).

The process embodied by the disclosure illustrated by
FIGS. 3 and 4, along with process variations as would be
known to one of ordinary skill in the art, can result in an
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I-TWG structure with superior critical dimension uniformity
(CDU) and small line edge roughness, and that is capable of
delivering laser light from the backside of the slide 150 to
NFT 250, and coupling ABS region 270 to form a less than 50
nm hot spot on the surface of the recording media with mini-
mal power usage.

In one embodiment, a process for manufacturing an inter-
ferometric taper waveguide (I-TWGQ) for heat assisted mag-
netic recording (HAMR) laser light delivery comprises
depositing an I-TWG film stack, spinning a photoresist pat-
tern, defining an I-TWG pattern using deep ultraviolet lithog-
raphy (DUV), transferring the I-TWG pattern to a first hard
mask layer using reactive ion etching (RIE), removing the
photoresist layer, forming a temporary I-TWG pattern on a
second hard mask layer using RIE, creating a final I-TWG
pattern by transferring the temporary I-TWG pattern to an
I-TWG core layer using RIE, refilling cladding around the
final I-TWG pattern, removing excess cladding using
waveguide etching lithography (WGE) and RIE, planarizing
using chemical mechanical planarization (CMP), and remov-
ing the second hard mask layer using wet etching. In some
embodiments, the I-TWG film stack comprises a first hard
mask layer of Ta,O; or Ta, a second hard mask layer of Cr or
Ru, a top cladding layer of SiO,, an I-TWG core layer of
Ta,0s, and a bottom cladding layer of SiO,.

Although described above in terms of various exemplary
embodiments and implementations, it should be understood
that the various features, aspects and functionality described
in one or more of the individual embodiments are not limited
in their applicability to the particular embodiment with which
they are described, but instead can be applied, alone or in
various combinations, to one or more of the other embodi-
ments of the application, whether or not such embodiments
are described and whether or not such features are presented
as being a part of a described embodiment. Thus, the breadth
and scope of the present application should not be limited by
any of the above-described exemplary embodiments.

The terms “over,” “under,” “between,” and “on” as used
herein refer to a relative position of one media layer with
respect to other layers. As such, for example, one layer dis-
posed over or under another layer may be directly in contact
with the other layer or may have one or more intervening
layers. Moreover, one layer disposed between two layers may
be directly in contact with the two layers or may have one or
more intervening layers. In contrast, a first layer “on” a sec-
ond layer is in contact with that second layer. Additionally, the
relative position of one layer with respect to other layers is
provided assuming operations are performed relative to a
substrate without consideration of the absolute orientation of
the substrate.

Terms and phrases used in this document, and variations
thereof, unless otherwise expressly stated, should be con-
strued as open ended as opposed to limiting. As examples of
the foregoing: the term “including” should be read as mean-
ing “including, without limitation” or the like; the term
“example” is used to provide exemplary instances of the item
in discussion, not an exhaustive or limiting list thereof; the
terms “a” or “an” should be read as meaning “at least one,”
“one or more” or the like; and adjectives such as “conven-
tional,” “traditional,” “normal,” “standard,” “known” and
terms of similar meaning should not be construed as limiting
the item described to a given time period or to an item avail-
able as of a given time, but instead should be read to encom-
pass conventional, traditional, normal, or standard technolo-
gies that may be available or known now or at any time in the
future. Likewise, where this document refers to technologies
that would be apparent or known to one of ordinary skill in the
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art, such technologies encompass those apparent or known to
the skilled artisan now or at any time in the future.

The presence of broadening words and phrases such as
“one or more,” “at least,” “but not limited to” or other like
phrases in some instances shall not be read to mean that the
narrower case is intended or required in instances where such
broadening phrases may be absent. The use of the term “mod-
ule” does not imply that the components or functionality
described or claimed as part of the module are all configured
in a common package. Indeed, any or all of the various com-
ponents of a module, whether control logic or other compo-
nents, can be combined in a single package or separately
maintained and can further be distributed in multiple group-
ings or packages or across multiple locations.

Additionally, the various embodiments set forth herein are
described in terms of exemplary block diagrams, flow charts
and other illustrations. As will become apparent to one of
ordinary skill in the art after reading this document, the illus-
trated embodiments and their various alternatives can be
implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.

What is claimed is:

1. A method for manufacturing an interferometric taper
waveguide (I-TWG), the method comprising:

depositing a film stack, the film stack comprising a plural-

ity of hard mask layers and a cladding-core sandwich
layer, wherein the plurality of hard mask layers is
located above the cladding-core sandwich layer, and the
cladding-core sandwich layer comprises a top cladding
layer, a bottom cladding layer, and a core layer located
between the top cladding layer and the bottom cladding
layer;

spinning a photoresist layer on a top hard mask layer;

defining with a first microfabrication process an I-TWG

pattern in the photoresist layer;

transferring with a second microfabrication process the

I-TWG pattern to the top hard mask layer;

removing the photoresist;

forming with a third microfabrication process the I-TWG

pattern in a bottom hard mask layer;

transferring with a fourth microfabrication process the

I-TWG pattern to the core layer;

refilling cladding material;

removing with a fifth microfabrication process excess clad-

ding material;

planarizing with a sixth microfabrication process a top

surface of the I-TWG; and

removing with a seventh microfabrication process the bot-

tom hard mask layer.

2. The method of claim 1 wherein each of the plurality of
hard mask layers comprises Ta,Os, Ta, Cr, or Ru.

3. The method of claim 1 wherein the cladding layers
comprise SiO, and the core layer comprises Ta,Os.

4. The method of claim 1 wherein the first microfabrication
process comprises using deep ultraviolet lithography.

5. The method of claim 1 wherein the second microfabri-
cation process, the third microfabrication process, and the
fourth microfabrication process each comprise using reactive
ion etching.

6. The method of claim 1 wherein the fifth microfabrication
process comprises using waveguide etching and reactive ion
etching.

7. The method of claim 1 wherein the sixth microfabrica-
tion process comprises using chemical mechanical planariza-
tion.
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8. The method of claim 1 wherein the seventh microfabri-
cation process comprises using wet etching.

9. The method of claim 1 wherein the I-TWG pattern
comprises a taper waveguide pattern, a directional coupler
pattern, and a splitter pattern. 5
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